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Corrected relationships are presented between integral properties of periodic gravity 
surface waves in the case of a non-zero mean Eulerian velocity. Also considered is the 
special case of a reference frame in which the mean wave momentum vanishes. 

1. Introduction 
Several exact relationships between integral properties of irrotational periodic 

gravity surface waves of finite amplitude have been derived by Longuet-Higgins 
(1975). These have been extended to gravity-capillary waves by Hogan (1979) and 
Crapper (1979), and to gravity-capillary interfacial waves by Hogan (1981). 

Some of these relationships are limited to the special case of a reference frame 
moving with a horizontal velocity which makes the mean Eulerian velocity vanish 
at each point below the level of the wave troughs. This corresponds to Stokes’s first 
definition of phase velocity. 

Cokelet ( 1977) derived relationships between integral properties of gravity surface 
waves which were claimed not to be restricted to this special reference frame. 
However, he applied these relationships only to waves with vanishing mean Eulerian 
velocity, i.e. according to Stokes’s first definition of wave celerity. 

The Fourier approximation method of Rienecker & Fenton (1981) has been applied 
by the author to the computation of finite-amplitude waves in a reference frame in 
which the mean wave momentum vanishes (Stokes’s second definition of phase 
velocity). Cokelet’s relationships were used for the calculation of the integral 
properties of the waves. 

However, in all cases it appeared that the computed values for the radiation stress 
(or mean excess of momentum flux) and the mean energy flux became negative, 
which is physically unrealistic since both fluxes have to be positive in the wave 
propagation direction. 

Recalculation of the relationships between the integral properties showed that the 
extended relationships provided by Cokelet are incorrect for frames of reference in 
which the mean velocity does not vanish. Corrected integral properties for a frame of 
reference with a non-zero mean Eulerian velocity are presented below. 

2. Definitions 
Consider two-dimensional periodic gravity waves with wavelength A, travelling 

over a horizontal bottom with phase velocity c. The x-axis is taken horizontal in the 
propagation direction of the wave and the z-axis is directed vertically upwards. The 
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free surface is given by z = ~ ( x ,  t )  and the bottom by z = z,,. The fluid is assumed to 
be incompressible and inviscid, and the velocity (u, w) to be irrotational. 

The mean surface elevation is defined by 

Similarly, the mean velocity u at any elevation below the wave trough is defined by 

Because the motion is irrotational, the mean velocity ti is independent of the 
elevation a t  which it is computed. 

The integral properties to be considered are the mean wave momentum 1, kinetic 
energy T ,  potential energy V ,  radiation stress S,., energy flux F and square of the bed 
velocity 3. They are defined by 

I = P ,  (1) 

T = F ,  (2) 

V = i: pgzdz, (3) 

h 

where an overbar denotes averaging over one wavelength, p denotes the mass density 
of the fluid, g the acceleration due to gravity, p the pressure and h the mean water 

These integral properties will be related to each other and to three constant 
quantities defined in a frame moving with phase velocity c : the mass flux Q, the total 
head R and the momentum flux S, as given by 

depth (h  = T-zb). 

P 1  
PS 29 

R = - +- [(u- c)2 + WZ] + (z-z,), 
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3. Integral properties in a frame of reference with a non-zero mean 
Eulerian velocity 

properties in a frame of reference with non-zero mean Eulerian velocity 4 :  
Longuet-Higgins (1975) has derived the following relations between integral 

I = pch-Q, (10) 

T = ~ ( c I - ~ Q ) ,  (11) 

(12) 

In the same paper relationships are found, which are only valid in a frame of 
reference according to Stokes's first definition of phase Velocity, i.e. with 4 = 0 : 

S = S,, - 2d+ph(c2 + hh) .  

Rxx = 4!F-3P+pqh, 

f' = E(3p-2P)+g@(I"+pEh), 
- 
C;4 = 2g(R"-h)-P, (15) 

where a tilde is used to denote quantities in this particular frame of reference. 
The extension of the relationships between integral properties given in (13), (14) 

and (15) to a frame of reference with non-zero 4 is straightforward when using the 
same techniques as Longuet-Higgins (1975), or by applying a coordinate trans- 
formation to the integral properties derived in a reference frame according to 
Stokes's first definition of phase velocity. Both methods have been used, and they 
result in the same relationships, as they should. 

Here we apply a coordinate transformation, and start with (13), (14) and (15), 
valid in a reference frame according to Stokes's first definition. 

Since the quantities Q, R and S are defined in a reference frame in which the 
observer is moving with the phase velocity c,  and in which the motion becomes 
steady, they have to be independent of the frame of reference, thus 

G=Q, B = R ,  R = S .  

Also, by Stokes's first definition of phase velocity, we have the following relation 
between the phase velocities in both reference frames: 

c"=  C--4. 

Relations between the velocities (u, w) and (G, a), and between the pressures p and j5 
can be obtained by applying a coordinate transformation to the values of these 
quantities in a reference frame moving with the phase velocity. The results are 

G(d, x", t )  = u(z, 2 ,  t )  - 4, 

zij(d, z", t )  = w(x,  2, t ) ,  

m, x", t )  = p ( s ,  2, t ) ,  

with the following relations between the coordinates 

d =  x-a t ,  z"=  2. 
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both reference frames are easily established : 
From the definitions (1)-(6)  the following relations between integral properties in 

I" = I - p a h ,  

!F = T - a I + b t i 2 h ,  

P =  v, (18) 

Inserting (17), (18), (19 )  and (21 )  into (13 )  leads, after rearranging some terms, 
immediately to the following relationship : 

X,, = 4 T - 3 V + p q h - 2 a I ,  (22)  
also valid in a frame of reference with ti + 0. 

Equations (lo), (11) and (22 )  are used to rearrange (20 )  to the following form: 

F = F - t i ( 3 T - 2 v + c I + p $ h ) + a 2  (g+pch-&otih). 

Using this equation and (14), (16 ) ,  (17), (18) and ( 2 1 ) ,  we arrive a t  the following 
relationship for the mean wave energy flux F : 

(23)  

U: = 2 g ( R - h ) - c ( c - 2 ~ ) .  (24)  

F = c (3T-  2V) +@(I  +pch) - 2ctiI. 

By combining (15), (21 )  &nd the identities 2 = R and c" = c-a, we arrive at  
- 

The desired relationships between integral properties in a frame of reference with 
non-zero mean Eulerian velocity are (10)-(12) and (22)-(24).  Equations (22 ) ,  (23 )  and 
(24 )  differ from Cokelet's results in that the terms (-2ptich),  [ - t ic(I+pch)]  and 
( -2 t i c /g )  have to be added to the right-hand sides of Cokelet's equations (5.15), 
(5.16) and (5.17),  respectively. 

4. Integral properties for Stokes's two definitions of phase velocity 
Two special cases will be considered here, depending on the definition of phase 

velocity. 
In Stokes's first definition of phase velocity the mean velocity a vanishes at all 

elevations below the wave trough. This leads to the relationships between integral 
properties as given by Longuet-Higgins (1975) ,  i.e. equations (lo)-( 15), applying 
ti = 0 in ( 1 1 ) .  

Stokes's second definition, however, is based on the assumption that the mean 
wave momentum I is equal to zero, a situation that is for instance encountered in 
closed wave flumes. In that case it follows from (10) that Q = pch, and the 
relationships become T = -&@ch, (25)  

S,, = 4 T - 3 V + p g h ,  (26 )  

F = c(3T-2V)+$L$ch, (27 1 
S = X,,+ph(c2+#gh), 
- 
U; = 2 g ( R - h ) - ~ ( c - 2 @ ) .  
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FIGURE 1.  Dimensionless radiation stFess S,,/(pgh2) aa a function of dimensionless wave height H / h  
for a dimensionless period (h/c)(g/h)r = 10. (a) Stokes’s first definition of phase velocity, equation 
(5.15) of Cokelet (1977) and equation (22) ; (b)  Stokes’s second definition of phase velocity, equation 
(22) ; (c) Stokes’s second definition of phaae velocity, equation (5.15) of Cokelet (1977). 

These equations can for instance be used to determine the integral properties in a 
reference frame with zero mean wave momentum I from the computed values in a 
reference frame with zero mean velocity Q. For the latter case, tabulated data are 
readily available in the literature (Cokelet 1977 ; Williams 1985). 

The Fourier approximation method of Rienecker & Fenton (1981) has been used 
to compute the radiation stress S,, and the mean energy flux F as a function of wave 
height H ,  according to both definitions of wave celerity and for a fixed dimensionless 
wave period (h/c)(g/h)i  = 10. The wave height H has been defined as the difference 
in water surface elevation between wave crest and trough. The number of Fourier 
components was equal to 64 in all computations. 

The results are presented graphically in dimensionless form in figures 1 and 2. For 
Stokes’s first definition of wave celerity, the results are identical for the integral 
properties presented by Cokelet (1977) and those presented in this paper. In case of 
Stokes’s second definition for the wave celerity the resulting radiation stress S,, and 
mean energy flux 3’ become negative for Cokelet’s relationships, whereas they remain 
positive in our case. 

Both radiation stress S,, and mean energy flux F are smaller in the case of a zero 
wave momentum I (second definition) than in the case of zero mean Eulerian velocity 
Q (first definition), which has consequences in for instance the computation of wave 
shoaling and wave set-up. 
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FIGURE 2. Dimensionless mean energy flux F / ( p ( g h ) k )  as a function of dimensionless wave height 
H / h  for a dimensionless period (A/c)(g/h)p = 10. (a )  Stokes’s first definition of phase velocity, 
equation (5.16) of Cokelet (1977) and equation (23) ; (b) Stokes’s second definition of phase velocity, 
equation (23); (c) Stokes’s second definition of phase velocity, equation (5.16) of Cokelet (1977). 

The author wishes to express his gratitude to M. W. Dingemans for drawing his 
attention to  several papers related to the subject and for the fruitful discussions 
during the preparation of this manuscript. 

Note added in proof. After completion of this work, the author became aware that the 
same relationships for a general inertial frame of reference are given in Appendix IV 
of Sobey et al. (1987). They do not mention explicitly that their relationships correct 
those given by Cokelet (1977). 
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